

Effects of Ocean Acidification on Tropical Coral Reefs in Florida & the Caribbean

Presentation outline

- Coral reefs 101
- Current threats to coral reefs and existing baseline of reef health
- The affects of ocean acidification on coral reef community metabolism & long-term implications for reef structure
- Results from recent studies on ecosystem-level responses of coral reefs to ocean acidification

Coral reefs provide...

- Fish habitat
- Major source of food
- Protection of coastlines from storm waves
- Sand for beaches
- Pharmaceuticals
- Recreational activities fishing, diving, etc.
- Long term storage of carbon

Florida jobs & businesses at risk from ocean acidification

Ecosystem services depend on 3-D structure of coral reefs

Calcification is a reversible process

Calcification

Carbonate Dissolution

(Saturation State (Ω) = [Ca²⁺] [CO₃²⁻]/Ksp*)

Coral reefs form slowly, over 1000's of years...

Reef accretion and sea level rise

Buddemeier and Smith 1988

Up to 10s of mm yr-1

~2.6 to 10 mm yr⁻¹

3.0 mm yr⁻¹ reef flats 7.0 mm yr⁻¹ coral thickets

IPCC Sea Level Rise $1961 - 2003 = 1.8 \text{ mm yr}^{-1}$

Reefs – keeping up with rising sea level

Depends upon:

- ➤ The balance between calcification and chemical dissolution of carbonates
- ➤ Erosion (chemical, physical and biological) and sediment export
- ➤ Coral reef accumulation rates
- Calcification & accumulation must exceed erosion and transport

Healthy corals and other calcifying organisms!

Coral reefs around the world are threatened!

Reef degradation has been attributed to local stressors

Global stressors as emerging threats Elevated Atmospheric CO₂ Global warming Sea Surface Temperature, 1880-2013 1971-2000 average Ocean acidification -1.52020 Year Emerging Threats $(pCO_2)y = 1.90x - 3453.96$ $R^2 = 0.3431$, st err = 0.20 (pH)y = -0.00188x + 11.842

IPCC-AR5 projects 33% to 66% of world's coral reefs subject to long-term degradation in next few decades due to climate-driven impacts.

Solar (thermal) Stress (elevated temp, light and UV radiation)

Ocean Acidification (OA) (decreased pH & Ω_A)

From: Gattuso et al. 2014. Cross-chapter box on coral reefs. WGII, IPCC-AR5. Based on RCP3-PD and 4.5.

Global warming (thermal stress) basics

- If water gets 1 or 2°C higher than the summer average, corals get stressed
 & bleach. Some recover, many die.
- Elevated light/UV can increase thermal stress & bleaching.
- Annual bleaching expected as early as 2020 in FL Keys

Healthy coral Bleached coral with algae without algae

From: Manzello 2015

Bleaching and coral disease

Marilyn E. Brandt, University of Miami

- High temperatures and bleaching can leave corals more vulnerable to disease
- Can quickly kill part or all of the coral colony
- By 1998, 82% of coral monitoring stations in the Keys were affect by disease

Porter et al. 2001

Bioerosion causes loss of reef structure

- Areas of dead coral are more vulnerable to bioerosion (when animals wear away the coral reef's limestone structure)
- Results in loss of reef structure
- The current baseline of reef health in the Atlantic & Caribbean

Coral reef community metabolism

Reef health as the balance between Net Ecosystem Production (NEP) and Net Ecosystem Calcification (NEC)

NEP= gross or total primary production (P) – gross respiration (R)

NEC= gross calcification – CaCO₃ dissolution

Ocean acidification (OA) basics

OA decreases rates of calcification

CaCO₃ production rates are estimated to decrease by as much as 60% by mid-century

(Guinotte & Fabry 2008, Jokiel et al. 2008, based on 11 coral species & 4 CCA species)

...and increases carbonate dissolution

...and can increase photosynthesis

$$CO_2 + H_2O + sunlight$$

$$\leftarrow$$
 CH₂O + O₂

Seagrasses: increased P & reduced light requirements

(Palacios & Zimmerman 2007, Jiang et al. 2010)

Macroalgae: 52% increase in growth (carbon uptake) at 2X CO_{2atm}

(Kübler et al. 1999, also check Hurd et al. 2009).

From: Palacios and Zimmerman 2007

Ocean acidification increases susceptibile to coral bleaching

Low pH reduced progression of black band disease

Low pH reduced virulence of coralline algae disease

Williams et al. 2014

Ocean Acidification

Infectious disease

Coral Bleaching

OA increases rates of bioerosion

At 2X pre-industrial CO_{2atm}...
euendolithic algae dissolve
50% more carbonate
(Tribolet et al. 2009)

Less of this

Long-term implications for reef function and structure

More of this

USGS Integrated Seascape Approach

Chemistry
(carbonate system & basic water quality)

Biogeochemical interactions & tolerances

Impacts of climate change & OA on coral reefs

Chemical & physical gradients, transport

Biology &
Biogeochemical
Cycling

Physical
Environment &
Processes

Carbonate formation & dissolution, physical tolerances

Measuring community calcification & dissolution

Calculated

Calc./Diss. (g CaCO₃ m⁻² 4 h⁻¹) $g = \frac{1}{2}\Delta TA x^{SHARQ V}/_{SHARQ SA}$

 CO_3^{2-} , pCO_2 , Ω , exposure time

Measured
Total Alkalinity (TA)
Total Carbon (DIC)
Temperature
Salinity
pH
DO

Chemical environment

Atlantic, Pacific & Caribbean study sites...

Calculating calcification & dissolution

Calculating dissolution thresholds

Dissolution occurs when seawater $pCO_2 > pCO_2$ threshold and $[CO_3^{2-}] < CO_3^{2-}$ threshold.

Dissolution thresholds are variable

Variation Due To:

- •Community Composition
- Seasonal Variation in G
- •Sediment composition
- •Biological control on G
- Water mass residence time

Merging Evidence for Dissolution Thresholds

Threshold Range

 Ω_A 3.0 to 3.2

pCO₂ 520 to 600 ppm

Year 2050-2060

Calcification/Dissolution
Tipping Point

Reef accumulation & sea level rise

OA increases dissolution and decreases calcification

Much sediment dissolution is already occurring.

Many reefs are not keeping up with sea level rise...none of Caribbean sites

CO₂ thresholds are already exceeded during the winter

Reefs are already dissolving during the winter...

Annual cycle of reef-building and dissolution

...throughout the Florida Keys

R/V Walton Smith surveyed the Florida Reef Tract in 2009 and 2010 to assess reef health

Florida is a carbonate platform that supports coastlines and coral reefs

Changes in sea level submerged & exposed the carbonate platform creating karst.

Karst forms Florida's sinkholes, aquifers & leaky coastal margins

Dissolution of carbonate rock forms sinkholes

Atmosphere

Mantle or cover sediment

Carbonate bedrock

Sinkhole formation

How will coastal acidification affect carbonate coastlines, groundwater flow to aquifers & reefs?

Key Points

- Reefs were not predicted to start dissolving until 2050-2060.
- The finding that reefs in Florida & the Caribbean are already starting to dissolve, even if for only part of the year, is surprising & alarming.
- The affects of coastal acidification on carbonate platforms are unknown but a concern.
- The threat of OA is a present threat...not a future threat.

Seagrass photosynthesis buffers OA

Photosynthesis

Consumes CO₂. Produces O₂, Increases pH

 $CO_2 + H_2O + sunlight$

Depends on:

- Proximity & water flow (short-term effects)
- Water mass residence time (short & long-term effects)

Recent studies indicate that some reefs may function as either OA or solar stress refuges

OA Refuge

- photosynthesis increases pH, $\Omega_{
 m A}$
- water mass residence time
- habitat proximity & flow

Solar Stress Refuge

- shading in turbid water
- exposure to high temp
- more resistant species

Ecology and Evolution Open Access Climate-change refugia in the sheltered bays of Palau: analogs of future reefs Robert van Woesik¹, Peter Houk², Adelle L. Isechal³, Jacques W. Idechong³, Steven Victor⁴ & Yimnang Golbuu³ Department of Biological Sciences, Florida Institute of Technology, 150 West University Drive, Melbourne, Florida, 32901 Palau International Coral Reef Center, 1 M-Dock Road, P.O. Box 7086, Koror, 96940, Palau Anature Conservancy, Palau Field Office, P.O. Box 1738, Koror, 96940, Palau

Natural, alternative (non-reef), shallow water refuges in mangrove-coral habitats of St. John, USVI protect from both solar stress and OA.

Hurricane Hole, St. John is characterized by...

DO and pH is higher in mangrove habitats than on the reef

pCO₂ is lower and Ω_A is higher in mangrove habitats than on the reef

Mangrove corals live in the shade and at higher temperatures than reef corals

Mangrove canopy shades corals and reduces PAR more than 70%

Temperature higher in mangrove-coral habitats than on reef

Where in the world are other mangrove-coral refuges?

Indonesia, Raja Ampat Panama Bocas del Toro Belize, Pelican Cay Florida, BNP?

- None in the geologic record.
- New ecosystem transition due to unprecedented rates of recent climate change?

Presentation summary

- Coral reefs grow slowly & are degrading rapidly in the Florida Keys and Caribbean.
- Local threats have already set an 'unhealthy baseline'.
- Ocean acidification causes loss of reef function & structure...reefs in the Keys and Caribbean are already dissolving...the threat is already here.
- Protection of natural, shallow-water refuges is a direct local action to help manage global climate change impacts, especially as sea level rises.

